2017大数据版图:大数据、AI与云计算结合已是大势所趋
听说,这里有具价值的大数据案例、
大数据实践经验、大数据创新思维,
更有你想融入的大数据高端人脉圈!
据说,国内近6成大数据精英都在这!
说到近几年热门的技术流行语,少不了云计算、大数据、人工智能、物联网等热词。不过,尽管人人(至少是企业界)言必称大数据,但是其在企业的采用周期要远远滞后于炒作周期。所以大数据从新奇酷的技术变成核心系统,从炒作到产品部署往往需要几年的时间。从去年开始,大家越来越感觉到这项技术已经在某种程度上陷入了停滞。不过好消息是,2017年大数据开始进入部署阶段,大数据的炒作逐渐散去,但它的应用却正在蓬勃发展,代表成熟度的标志性IPO也正在出现。而大数据在几年前经历的泡沫正在无可争议地转移到人工智能身上,过去几个月AI所经历的共同意识“大爆炸”与大数据当年相比甚至有过之而无不及。从2013开始制作大数据版图的Matt Turck刚刚发布了新的2017年大数据版图,我们一起来看看在这个领域有哪些新趋势和玩家的分布情况。
高层趋势
大数据+AI=新栈
2016年无疑是机器学习之年,任何目睹过众多pitch的VC都应该能感受到这一点,那就是每一家初创企业都成为了“机器学习公司”,“.ai”变成了必备域名,而“等等,可是我们是用机器学习做到这个的”也成为了pitch deck的必备幻灯片。机器学习正在迅速成为许多应用的关键建构块。
相应地,一个新兴的技术栈正在出现,在这个技术栈里面,大数据被用于处理核心的数据工程挑战,而机器学习则用于以分析洞察或者行动的形式从数据中析取出价值。
换言之,大数据提供管道,AI提供智能。当然,这种共生关系已经出现多年,只是能实现这个的目前还不多而已。
但是,现在这些技术开始大众化的普及。“大数据+AI”正在成为众多现代应用(不管是消费者型还是企业型)的默认技术栈。无论是初创企业还是一些财富1000强公司都在利用这一新的技术栈。而且在云巨头的努力下,这个技术栈往往还有云计算这个更基础的建构块的加入,以机器学习云的形式出现。
但是AI的大众化是否就意味着这种技术在短期内能实现商品化呢?现实是AI在技术上仍然非常困难。尽管许多工程师都在争先培养AI技能,但全球这方面的领域专家仍然十分稀缺。
不过这股大众化的趋势已经不可逆转,而机器学习早晚都要从竞争优势演变成桌面筹码。
这对初创企业和大公司都会产生影响。对于初创企业来说,除非你把AI软件做成自己的终产品,否则的话自我标榜为“机器学习公司”将变得毫无意义。对于大公司来说,如果现在你不积极推进大数据+AI的战略,就会有变得过时的风险。AI已经是下一个风口了。
企业预算:一切向钱看
从2016年的情况来看,财富1000强公司已经在纷纷增加预算用于升级核心基础设施以及分析,其关键的关注点正是大数据技术。分析机构IDC预计大数据和分析市场将从2016年的1300亿美元增长到2020年的超过2030亿美元。
而且财富1000强公司里面的许多买家在大数据技术方面正在变得越来越娴熟、越来越目光敏锐。这些公司过去几年做了很多功课,正在进入全面部署阶段。这种情况不仅发生在技术导向型的公司,在很多行业都是如此。
在大公司每隔几年就要发生的旧技术替代自然周期的推动下,这种情况得到进一步加速。大数据遭遇的环境也从逆风变成了顺风。当然,很多大公司仍然处在大数据部署的早期阶段,但是情况似乎在快速演变。
企业数据向云端迁移
直到几年前,把企业数据迁移到公有云上面对于大公司CIO来说还是不可想象的事情,顶多是在开发环境下或者拿非关键的、面向外部的应用来尝试一下。但现在画风开始有所变化,大家对此的态度似乎变得更加开放了,比方说你会听到这样的说法“不管怎么说我们的已经放到Salesforce云上面了”,或者“在网络安全方面我们永远也不会有像AWS那么多的预算”。但目前里大多数企业都向公有云迁移还远得很,这部分是因为遗留系统和管制方面的原因。不过云供应商正在竭尽全力来加速这一趋势的转变。比如说AWS甚至可以开卡车来运你的硬盘到云端。
速鸿科技(http://www.suhon***/) - BI商业智能大数据分析工具与服务提供商
2017大数据版图:大数据、AI与云计算结合已是大
广州其他生活服务相关信息
19分钟前
18小时前
18小时前
18小时前
2天前
2天前
2天前