广州列举网 > 教育培训 > 中小学辅导班 > 广州荔湾初中寒假补习恒高一对一中考数学知识归纳
广州
[切换城市]

广州荔湾初中寒假补习恒高一对一中考数学知识归纳

更新时间:2016-01-07 22:48:38 浏览次数:137次
区域: 广州 > 荔湾 > 荔湾湖
类别:初中辅导班
地址:荔湾区中山八路23号富力商贸大厦402室
加减法:

同分母的分式相加减,分母不变,把分子相加减。

异分母的分式先通分,化为同分母的分式,再加减。

分式方程:

分母中含有未知数的方程叫分式方程。

使方程的分母为0的解称为原方程的增根。

B、方程与不等式

1、方程与方程组

一元一次方程:

在一个方程中,只含有一个未知数,并且未知数的指数是1,这样的方程叫一元一次方程。

等式两边同时加上或减去或乘以或除以(不为0)一个代数式,所得结果仍是等式。

解一元一次方程的步骤:去分母,移项,合并同类项,未知数系数化为1。

二元一次方程:含有两个未知数,并且所含未知数的项的次数都是1的方程叫做二元一次方程。

二元一次方程组:两个二元一次方程组成的方程组叫做二元一次方程组。

适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解。

二元一次方程组中各个方程的公共解,叫做这个二元一次方程的解。

解二元一次方程组的方法:代入消元法/加减消元法。

一元二次方程:只有一个未知数,并且未知数的项的高系数为2的方程

1)一元二次方程的二次函数的关系

大家已经学过二次函数(即抛物线)了,对他也有很深的了解,好像解法,在图象中表示等等,其实一元二次方程也可以用二次函数来表示,其实一元二次方程也是二次函数的一个特殊情况,就是当Y的0的时候就构成了一元二次方程了。那如果在平面直角坐标系中表示出来,一元二次方程就是二次函数中,图象与X轴的交点。也就是该方程的解了

2)一元二次方程的解法

大家知道,二次函数有顶点式(-b/2a,4ac-b2/4a),这大家要记住,很重要,因为在上面已经说过了,一元二次方程也是二次函数的一部分,所以他也有自己的一个解法,利用他可以求出所有的一元一次方程的解

(1)配方法

利用配方,使方程变为完全平方公式,在用直接开平方法去求出解

(2)分解因式法

提取公因式,套用公式法,和十字相乘法。在解一元二次方程的时候也一样,利用这点,把方程化为几个乘积的形式去解

(3)公式法



这方法也可以是在解一元二次方程的方法了,方程的根X1={-b+√[b2-4ac)]}/2a,X2={-b-√[b2-4ac)]}/2a

3)解一元二次方程的步骤:

(1)配方法的步骤:

先把常数项移到方程的右边,再把二次项的系数化为1,再同时加上1次项的系数的一半的平方,后配成完全平方公式

(2)分解因式法的步骤:

把方程右边化为0,然后看看是否能用提取公因式,公式法(这里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化为乘积的形式

(3)公式法

就把一元二次方程的各系数分别代入,这里二次项的系数为a,一次项的系数为b,常数项的系数为c

4)韦达定理

利用韦达定理去了解,韦达定理就是在一元二次方程中,二根之和=-b/a,二根之积=c/a

也可以表示为x1+x2=-b/a,x1x2=c/a。利用韦达定理,可以求出一元二次方程中的各系数,在题目中很常用

5)一元一次方程根的情况

利用根的判别式去了解,根的判别式可在书面上可以写为“”,读作“diao ta”,而=b2-4ac,这里可以分为3种情况:

I当>0时,一元二次方程有2个不相等的实数根;



II当=0时,一元二次方程有2个相同的实数根;
广州中小学辅导班相关信息
12月2日
11月19日
10月31日
7月18日
7月3日
注册时间:2015年12月05日
UID:257715
---------- 认证信息 ----------

查看用户主页