广州列举网 > 教育培训 > 中小学辅导班 > 广州补习班高一数学知识点总结
广州
[切换城市]

广州补习班高一数学知识点总结

更新时间:2017-08-23 15:58:22 浏览次数:41次
区域: 广州 > 荔湾 > 中山七八路
类别:高中辅导班
地址:荔湾区中山八路23号富力商贸大厦402
广州补习班高一数学知识点总结
广州新补习班经验丰富师资优势小班辅导,快速提高分数
地址:越秀区中山一路拓业大厦前座301,电话:020-87352655
    荔湾区中山八路23号富力商贸大厦402,电话:020-81193580
高1数学公式
  抛物线:y=ax^2+bx+c
  就是y等于ax 的平方加上 bx再加上 c
  a > 0时开口向上
  a < 0时开口向下
  c = 0时抛物线经过原点
  b = 0时抛物线对称轴为y轴
  还有顶点式y = a(x+h)^2 + k
  就是y等于a乘以(x+h)的平方+k
  -h是顶点坐标的x
  k是顶点坐标的y
  一般用于求大值与小值
  抛物线标准方程:y^2=2px
  它表示抛物线的焦点在x的正半轴上,焦点坐标为(p/2,0) 准线方程为x=-p/2
  由于抛物线的焦点可在任意半轴,故共有标准方程y^2=2px y^2=-2px x^2=2py x^2=-2py
  两角和公式
  sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA
  cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB
  tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)
  ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)
  和差化积
  2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)
  2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)
  sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
  tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB
  ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB
  半角公式
  sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)
  cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)
  tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))
  ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))
  倍角公式
  tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga
  cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a
  三角形的面积
  已知三角形底a,高h,则S=ah/2
  已知三角形三边a,b,c,半周长p,则S= √[p(p - a)(p - b)(p - c)] (海伦公式)(p=(a+b+c)/2)
  和:(a+b+c)*(a+b-c)*1/4
  已知三角形两边a,b,这两边夹角C,则S=absinC/2
  设三角形三边分别为a、b、c,内切圆半径为r
  则三角形面积=(a+b+c)r/2
  设三角形三边分别为a、b、c,外接圆半径为r
  则三角形面积=abc/4r
  已知三角形三边a、b、c,则S= √{1/4[c^2a^2-((c^2+a^2-b^2)/2)^2]} (“三斜求积” 南宋秦九韶)
  | a b 1 |
  S△=1/2 * | c d 1 |
  | e f 1 |
  【| a b 1 |
  | c d 1 | 为三阶行列式,此三角形ABC在平面直角坐标系内A(a,b),B(c,d), C(e,f),这里ABC
  | e f 1 |
  图形周长 面积 体积公式
  长方形的周长=(长+宽)×2
  正方形的周长=边长×4
  长方形的面积=长×宽
  正方形的面积=边长×边长
  圆:体积=4/3(π)(r^3)
  面积=(π)(r^2)
  周长=2(π)r
  圆的标准方程 (x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标
  圆的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0
  (一)椭圆周长计算公式
  椭圆周长公式:L=2πb+4(a-b)
  椭圆周长定理:椭圆的周长等于该椭圆短半轴长为半径的圆周长(2πb)加上四倍的该椭圆长半轴长(a)与短半轴长(b)的差。
  (二)椭圆面积计算公式
  椭圆面积公式: S=πab
  椭圆面积定理:椭圆的面积等于圆周率(π)乘该椭圆长半轴长(a)与短半轴长(b)的乘积。
  以上椭圆周长、面积公式中虽然没有出现椭圆周率T,但这两个公式都是通过椭圆周率T推导演变而来。常数为体,公式为用。
  椭圆形物体 体积计算公式椭圆 的 长半径*短半径*PAI*高
  公式
  令tan(a/2)=t
  sina=2t/(1+t^2)
  cosa=(1-t^2)/(1+t^2)
  tana=2t/(1-t^2)
  降幂公式
  (sin^2)x=1-cos2x/2
  (cos^2)x=i=cos2x/2
  判别式
  b2-4ac=0 注:方程有两个相等的实根
  b2-4ac>0 注:方程有两个不等的实根
  b2-4ac<0 注:方程没有实根,有共轭复数根
  根与系数的关系
  X1+X2=-b/a X1*X2=c/a 注:韦达定理
  一元二次方程的解
  -b+√(b2-4ac)/2a -b-√(b2-4ac)/2a
  三角不等式
  |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b
  |a-b|≥|a|-|b| -|a|≤a≤|a|
  余弦定理
  b2=a2+c2-2accosB 注:角B是边a和边c的夹角
  某些数列前n项和
  1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2
  2+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6
  13+23+33+43+53+63+…n3=n2(n+1)2/4 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3
广州中小学辅导班相关信息
10月31日
7月18日
7月3日
6月29日
6月4日
5月31日
注册时间:2016年01月13日
UID:265468
---------- 认证信息 ----------
手机已认证
查看用户主页